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Abstract

Integrated mechanics and a finite element method are presented for predicting the damping of doubly
curved laminates and laminated shell composite structures. Damping mechanics are formulated in
curvilinear co-ordinates from ply to structural level and the structural modal loss factors are calculated
using the energy dissipation method. The modelling of damping at the laminate level is based on first order
shear shell theory. An eight-node shell damping finite element is developed. Comparisons of the present
model with classical and discrete layer laminate damping theory predictions are shown. Modal damping
and natural frequencies of composite plates and open cylindrical shells were measured and correlated with
predicted results. Parametric studies illustrate the effect of curvature and lamination on modal damping
and natural frequency.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The importance of passive damping in improving the dynamic performance of flexible
structures requiring tight vibration control, high fatigue endurance, impact resistance, aeroelastic
stability and accurate positioning of devices and sensors is broadly recognized. Polymer–matrix
composites are known to exhibit significantly higher material damping than most common metals,
as a result of the polymer matrix and material heterogeneity. As a result, the development of
analytical and computational models for the prediction and tailoring of passive damping in
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composite structures with realistic geometries, such as wind turbine blades, fan blades, aircraft
and automotive panels, is receiving current attention.
Substantial analytical and experimental work was reported on damping mechanisms of

composite laminates, e.g., Refs. [1–5]. In the area of composite structures damping, Bicos and
Springer [6] analyzed the damping of panels with cutouts. Alam and Asnani [7], Saravanos [8] and
Taylor and Nayfeh [9] studied the vibrational characteristics of thick composite plates. Saravanos
and Chamis [10] and Saravanos [11] presented single and discrete layer models and finite elements
for laminated plates of variable thickness and lamination and predicted natural frequencies and
modal loss factors. Saravanos and Pereira [12] presented analytical discrete layer solutions and a
finite element for analyzing the effect of interply viscoelastic layers on the damping behaviour of
plates. Zapfe and Lesieutre [13] and Maheri and Adams [14] developed finite element models to
calculate damping in composite beams and plates, respectively, with interlaminar damping layers.
Some work limited in scope has been reported on the structural damping of composite shells,

whereas very few experimental results have been presented. Singh and Gupta [15] reported a first
order shear solution to calculate natural frequencies and damping in uni-directional composite
shells. Chate et al. [16] developed a triangular finite element and predicted damping by the energy
dissipation method for plates, shells and sandwich panels using a correspondence principle. Yet, it
seems that neither mechanics and integrated damping models have been developed enabling
unified predictions of damped dynamic characteristics of arbitrary laminated shells, nor a
comprehensive study correlating analytical damping predictions with experimental values.
Consequently, the present paper presents unified mechanics and a finite element formulation for
predicting the damped vibrational characteristics of curvilinear composite shells of arbitrary
geometry and lamination. Constitutive relations, equations of motion and first order shear
kinematic assumptions are formulated in a curvilinear co-ordinate system. The formulation is
applicable in both thin and intermediately thick shell structures. A special eight-node shell finite
element incorporating the aforementioned damping mechanics is developed and validated with
existing analytical results for beams and plates [8,11], as well as, with experimental results for
beams [1], plates and curved shells. Vibration analysis experiments are conducted on glass/
polyester (Gl/Pl) plates and cylindrical shells and measured modal damping is correlated with
predicted results. The effect of lamination, boundary conditions and shell curvature on the modal
damping of cylindrical shells is also studied.

2. Curvilinear laminate mechanics

A typical curvilinear doubly curved laminate configuration is shown schematically in Fig. 1. It
is assumed that each ply of the laminate remains parallel to a reference curvilinear surface Ao;
which is defined with respect to a global Cartesian co-ordinate system Oxyz: An orthogonal
curvilinear co-ordinate system OxZz is considered, such that the axes x and Z lie on the reference
surface Ao; while the axis z remains straight and perpendicular to the layers of the laminate.
Unless otherwise stated, all material properties, displacements and strains refer to the curvilinear
co-ordinate system.
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2.1. Governing material equations

Each ply is assumed to have viscoelastic behaviour. Assuming cyclic loading, the off-axis
complex stress component rc is provided by

rc ¼ ð½Qc� þ j½Qc�½gc�ÞSc; ð1Þ

where Sc; rc are the engineering strain and stress in extended vectorial notation, [Qc] is the storage
stiffness matrix and [gc] is the damping matrix, j is the imaginary unit, subscript c indicates that
the previous quantities are defined with respect to the axes of the curvilinear system OxZz:

On-axis ply damping: The material co-ordinate system indicated with subscript l is curvilinear
with axis 1 parallel to the fibers and through-thickness axis 3 parallel to axis z: It is assumed that
the damping of the composite ply on the material co-ordinate system is orthotropic (in planes 1–2
and 1–3), described by six damping (loss) coefficients, these are [4]: (1) longitudinal loss
coefficient, Zl1 (direction 11); (2) transverse in-plane loss coefficient, Zl2 (direction 22); (3)
transverse through the thickness loss coefficient, Zl3 (direction 33); (4) in-plane shear loss
coefficient, Zl6 (direction 12); (5) interlaminar shear loss coefficient, Zl4 (direction 23); and (6)
interlaminar shear loss coefficient, Zl5 (direction 13). Further, transverse isotropy is assumed on
the 2–3 plane, which reduces the independent coefficients to four (Zl3 ¼ Zl2; Zl5 ¼ Zl6). The
damping coefficients form the on-axis ply damping matrix [gl]:

½gl� ¼

Zl1 0 0 0 0 0

0 Zl2 0 0 0 0

0 0 Zl3 0 0 0

0 0 0 Zl4 0 0

0 0 0 0 Zl5 0

0 0 0 0 0 Zl6

2
6666666664

3
7777777775
: ð2Þ

Off-axis ply damping: For the case of rotated (off-axis) curved plies, the equivalent damping
capacity of the composite in the curvilinear co-ordinate system OxZz is best described by the
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Fig. 1. Curvilinear laminate with co-ordinate systems.
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following (6� 6) off-axis damping matrix [gc] [4] provided by the following transformation:

½gc� ¼ ½R�T½gl �½R�
�T; ð3Þ

where Z indicates loss factor.The off-axis ply damping matrix is non-diagonal and has the general
form

½gc� ¼

Zc11 Zc12 0 0 0 Zc16

Zc21 Zc22 0 0 0 Zc26

0 0 Zc33 0 0 0

0 0 0 Zc44 Zc45 0

0 0 0 Zc54 Zc55 0

Zc61 Zc62 0 0 0 Zc66

2
6666666664

3
7777777775
: ð4Þ

Strain–displacement relations: The strain Sc in the curvilinear co-ordinate system of a shallow
laminate is related to the displacements as follows:

S1 ¼
1

g011
u;x þ

go
11;Z

go
22

v þ
go
11

R1
w

� �
;

S2 ¼
1

g022
v;Z þ

go
22;x

go
11

v þ
go
22

R2
w

� �
;

S6 ¼
1

go
11

v;x �
go
11;Z

g22
u

� �
þ

1

go
22

u;Z �
go
22;x

go
11

v

� �
;

S3 ¼ w;z;

S4 ¼ v;z þ
1

g022
w;Z �

go
22

R2
v

� �
;

S5 ¼ u;z þ
1

g011
w;x �

go
11

R1
u

� �
; ð5a2fÞ

where u; v;w are the displacements along x; Z and z; respectively, R1 and R2 are the curvature radii
of the surface Ao along the orthogonal axes x and Z respectively, and go

ij are the metric tensor
components corresponding to the reference surface Ao:

2.2. Kinematic assumptions

A first order shear theory is used to model the variation of the displacement through the
thickness of the shell. The displacements take the following form:

uðx; Z; z; tÞ ¼ uoðx; Z; tÞ þ zbxðx; Z; tÞ;

vðx; Z; z; tÞ ¼ voðx; Z; tÞ þ zbZðx; Z; tÞ;

wðx; Z; z; tÞ ¼ woðx; Z; tÞ;

ð6Þ

where again u1; vo and w1 are the displacements (on the reference surface Ao) along x; Z and z axes
respectively, bx and bZ are the rotation angles. In the context of Eq. (5), the generalized strains are
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the mid-strains S0 on the doubly curved reference surface Ao:

So
1 ¼

1

go
11

uo
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go
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go
22

vo

� �
þ

wo

R1
; So

2 ¼
1
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ð7Þ

and the curvatures k; with components defined as follows:

k1 ¼
1

go
11

bx;x þ
go
11;Z

go
22

bZ

� �
; k2 ¼

1

go
22

bZ;Z þ
go
22;x

go
11

bx

� �
;

k6 ¼
1

go
11

bZ;x �
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11;Z

go
22
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� �
þ

1

go
22

bx;Z �
go
22;x

go
11

bZ

� �
: ð8Þ

2.3. Laminate damping

The dissipated strain energy per unit area in the laminate DWL during a vibration cycle is
defined as follows:

DWL ¼ 1=2jJj
Z h=2

�h=2
STc ½Qc�½gc�Sc dz; ð9Þ

where jJj ¼ go
11g

o
22 is the determinant of the Jacobean of the Cartesian to the curvilinear co-

ordinates.
Again, taking into account Eq. (6) and integrating through the thickness, the dissipated strain

energy per unit area of the laminate is

DWL ¼ 1
2
½So

i AdijS
o
j þ kiBdijS

o
j þ So

i Bdijkj þ kiDdijkj þ So
kAdklS

o
l�;

i; j ¼ 1; 2; 6; k; l ¼ 4; 5; ð10Þ

where [Ad ], [Bd ], [Dd ] are the extensional, extensional-bending and bending damping matrices,
respectively, and [Asd ] is the transverse shear damping matrix, defined as

/Adij;Bdij;DdijS ¼ go
11g

o
22

XL

k¼1

Z zkþ1

zk

Qcik
gckj

/1; z; z2S dz; i; j; k ¼ 1; 2; 6;

Asdij ¼ go
11g

o
22

XL

k¼1

Z zkþ1

zk

Qcik
gckj

dz; i; j; k ¼ 4; 5: ð11Þ

No shear correction factor is assumed in this work for Eq. (11). The previous expression is
complete in that it represents general laminate configurations and deformations. Therefore, the
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equivalent damping capacity of a general curvilinear laminate is a function of the laminate
parameters and the specific deformation state.

3. Structural mechanics

In this section the finite element developed is described, equations of motion are presented and
the energy approach is used for the calculation of the damping capacity of the structure.

3.1. Equations of motion

Equations of motion are defined in the orthogonal curvilinear system in standard variational
form

�
Z

V

dSisijJj dV þ
Z

V

dukð�r .ukÞjJj dV þ
Z
Gs

duktk dG ¼ 0;

i; j ¼ 1; :::; 6; k ¼ 1; :::; 3; ð12Þ

where the three integrals on the left-hand side express variation of strain energy of the structure,
work of body forces and work of surface tractions, respectively.

3.2. Finite element formulation

Based on the previous generalized equations, an eight-node finite element was used with bi-
quadratic shape functions of the Serendipity family. Approximations of the generalized
mechanical state (displacements and rotation angles) of the reference surface are of the following
type:

uo
j ðx; Z; tÞ ¼

PM
i¼1 uoi

j ðtÞN
iðx; ZÞ; j ¼ 1; :::; 3;

bo
j ðx; Z; tÞ ¼

PM
i¼1 b

oi
j ðtÞN

iðx; ZÞ; j ¼ 1; 2:
ð13Þ

The radii R1 and R2 and the metric coefficients go
11; g

o
22 of the reference surface are calculated in

each element based on the previous iso-parametric surface representation.
Assuming harmonic motion and substituting the previous Eqs. (11) and (13) into the equations

of motion (12), integrating over the shell area of each element, and collecting the common
coefficients we arrive to the final form of an N-size discrete system of equations describing the
forced frequency response of the shell

�o2½M�Uþ j½C�Uþ ½K�U ¼ FðoÞ; ð14Þ

where [M],[C] and [K] are the inertia, damping and stiffness matrices of the structure, respectively.

3.3. Structural damping

Solution of Eqs. (14) for the free vibration case (F ¼ 0) yields the damped complex conjugate
eigenvalues (poles) of the system. Alternatively, using the dissipated energy approach [4], the
modal loss factor associated with the mth order mode Zm of the laminated shell will be the ratio of
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dissipated to maximum strain modal energy

Zm ¼

R
A
DWLm dAR

A
WLm dA

; ð15Þ

where DWLm; WLm are, respectively, the dissipated and maximum laminate strain energies of the
mth undamped mode shape. Numerical solution of the undamped case ([C]=0) in Eq. (14)
provides the undamped natural frequencies of the shell structure and the modal displacement
vectors. The modal loss factor is then

Zm ¼
UT

m½C�Um

UT
m½K�Um

: ð16Þ

4. Experiments

Modal analysis experiments were conducted on a [00] Gl/Pl plate and a [00] Gl/Pl cylindrical
panel with fibres aligned along the circumferential direction. Both components were fabricated
using hand lay-up and tested under free–free boundary conditions in order to eliminate damping
due to friction in the supports. Similar experiments were performed on uni-directional beam
specimens to measure ply damping coefficients and elastic constants.

Experimental configuration: The experimental set-up is shown schematically in Fig. 2. An
instrumented impact hammer with a load cell was used to excite the structure at positions 1 (plate)
or 3 (panel). The acceleration of the structure was measured using an 1gr accelerometer at the
middle of the plate (position 1), and at the corner of the cylindrical panel (position 2). The
positions of excitation and acceleration measurement were chosen such that a high number of
modes could be acquired within the respective frequency response functions (FRFs). The signals
of the impact hammer and the accelerometer were first amplified, then digitized through a high-
speed data acquisition board and finally processed using FFT software, to obtain power spectra
and FRFs of the accelerance (acceleration/force) of the tested component. The measured FRFs
were used to extract the modal damping and frequency values of each vibration mode. For this
reason, the measured FRFs were further correlated with the ones generated by a known
parametric model consisting of a series of complex exponential terms, each term approximating
an individual mode with known modal parameters (frequency and damping), such that the least-
squares error between the model and measured FRFs was minimized. Through this correlation,
the modal frequencies and damping coefficients of the tested specimen or structure were extracted.

Fig. 2. Experimental configuration for measurement of natural frequency and modal damping.
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5. Applications and discussion

Modal damping capacities and natural frequencies of various beam, plate and shell composite
structures were predicted using the present methodology. Results were compared with reported
experimental data, as well as, with other analytical solutions obtained with classical laminate
damping theory (CLDT) and discrete layer damping theory (DLDT) Ritz solutions. Additional
results were correlated with measured values obtained from experiments conducted on a Gl/Pl
plate and a cylindrical panel. Finally, the effect of boundary conditions and lamination on shell
damping was studied.

5.1. Materials and assumptions

The composite materials considered were graphite/epoxy (Gr/epoxy) of 50% fiber volume ratio
[1] and Gl/Pl. The mechanical properties of Gr/epoxy are shown in Table 1. The tested plate and
cylindrical shell panel were made of Gl/Pl composite. The damping and elastic properties of Gl/Pl
were calculated from measurements of natural frequency and modal damping in off-axis uni-
directional composite beam specimens of [0], [15], [30], [45], [60], [75] and [90] fiber orientation
angle [17], under free support. The specimens were cut from the [00] plate after it was tested. Free
flexure conditions were assumed for the beam specimens (Nxa0; Mxa0; Ny ¼ Ns ¼
My ¼ Ms ¼ 0). It is also pointed out that the damping values of higher modes may include
contribution from shear terms (see Figs. 4 and 5). To avoid this problem, the beam specimens had
a very high thickness aspect ratio (L=h ¼ 200) to ensure that shear effects on the first modes
remained minimal. For the calculation of the elastic properties of the composite (E11; E22; G12; n12)
the equivalent elasticity modulus was fitted to experimental values backcalculated from the
measured modal frequencies of each beam. Whereas for the damping properties (Zl1; Zl2; Zl6) the
flexural damping capacity was fitted to the measured modal damping of the bending modes of the
specimens. The values shown in Table 1 correspond to measured data in the high-frequency range
(>150Hz), where frequency effects on damping were observed to be insignificant.
[0/90/745]S Free–free beam: Fig. 3 shows predicted modal damping values of the fundamental

mode of a [y=90þ y=45þ y=� 45þ y]S Gr/epoxy free–free thin beam (l=h ¼ 125), as a function
of fiber orientation angle y: The beam was 200mm long, 12mm wide and 1.6mm thick. It was
modelled using a 10� 1 uniform mesh. Measured [1] and predicted results using CLDT [11] are
also shown. The FSDT predictions are in very good agreement with CLDT, because the beam is
thin, yet slightly better than those of CLDT towards the reported measurements. As seen in Fig. 3,

Table 1

Elastic and damping properties of HM-S/DX210 Gr/epoxy and Gl/Pl composite

Composite r (kg/m3) E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) n12 Zl1 (%) Zl2 (%) Zl4 (%) Zl6(%)

Gr/epoxy 1588 192.3 5.05 3.12 2.03 0.275 0.08 0.67 0.76 1.11

Gl/Pl 1672 25.8 8.7 3.5 3.5n 0.34 0.65 1.70 0 2.05

nNot measured.
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the deviation between CLDT and FSDT is higher in laminations, where the interlaminar shear
effects are higher, for example when y ¼ 451:
[04/904]S Simply supported plate: Figs. 4 and 5 demonstrate the effect of thickness aspect ratio

on the normalized natural frequencies and modal loss factors of the fundamental and higher

0 20 40 60 80 100 120 140 160 180
0.0

0.1

0.2

0.3

0.4

0.5

 CLDT
 FSDT
 Measured

M
od

al
 L

os
s 

F
ac

to
r 

(%
)

Angle θ (deg) 

Fig. 3. First modal damping of a [y=90þ y=45þ y=� 45þ y]S Gr/epoxy free–free beam.
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bending modes (1, 1) and (1, 2), respectively, of a simply supported square plate [04/904]S, having
an edge length of 406.4mm. The natural frequencies were normalized by onorm ¼ oa2=h: A
uniform (8� 8) mesh was used. Results are also shown from an exact Ritz solution using DLDT
with N ¼ 16 layers, which has shown to provide robust predictions of damping capturing all
interlaminar shear effects through-thickness [8]. Clearly, the FSDT element provided superior
estimates of modal frequency and damping than the CLDT exact Ritz solution in thick,
intermediately thick and thin plates due to its ability to capture an average interlaminar shear
strain and approaches the exact DLDT solution. The difference between the CLDT exact Ritz
solution and DLDT predictions of the modal loss factor provide an average estimation of
interlaminar shear damping. Finally, the results of the FSDT finite element converge to the exact
CLDT and DLDT solutions as the plate thickness is decreased, indicating excellent behaviour of
the damping element at low thicknesses and no shear locking.

[03] Gl/Pl free–free plate: The tested square plate with dimensions 455mm� 455mm� 2.3mm
was modelled using a uniform (8� 8) mesh. Fig. 6 illustrates the FE predicted and measured
frequencies and modal loss factors. The correspondence of the modes has been carried out after
careful inspection of mode shapes (FE) and modal loss factors. Very good agreement was
obtained between predicted and experimental data for both natural frequency and modal loss
factor. The plate was fabricated using hand lay-up, resulting in some imperfections, which are in
part responsible for the deviations observed.

[03] Gl/Pl free–free cylindrical panel: The tested panel was 0.355mm long (circumferential
direction), 204mm wide and 3.3mm thick. A finer mesh along the circumferential direction
(16� 4) was used. Fig. 7 illustrates the FE predicted and experimentally measured values of modal
loss factors versus modal frequencies. Very good agreement was obtained between predicted and
measured natural frequencies and modal loss factors. Deviations are higher for modal damping,
since it is a more sensitive quantity to local imperfections due to hand lay-up fabrication, but there
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Fig. 5. Effect of thickness aspect ratio on the modal loss factor of a [04/904]S Gr/epoxy simply supported plate.
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is still good correlation between predicted and experimental results. These successful correlations
lend further credence to the capability of the method to provide reliable predictions on natural
frequency and modal loss factor in thin and intermediately thick shell structures.
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Fig. 6. FE and measured values for natural frequency and modal loss factor of a UD Gl/Pl free–free plate. Numbers in

parenthesis indicate predicted mode number.
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[04/904]S Simply supported cylindrical panel: The effect of curvature on natural frequency and
modal damping of a composite cylindrical shell panel with a constant circumferential length of
406.4mm (circumferential direction), constant axial length (width) of 406.4mm and uniform
thickness of 2.7mm was investigated. A uniform (15� 4) FE mesh was implemented. Figs. 8 and 9
show the effect of curvature on the natural frequencies of the fundamental and higher bending
modes (1,1) and (2,2) and on the corresponding modal loss factors. The natural frequencies

Fig. 8. Effect of curvature angle on the fundamental bending frequencies of a [04/904]S Gr/epoxy simply supported

shell panel. Numbers in parenthesis indicate bending mode shape.
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resulting from the first order shear damping theory approach are compared with an exact Ritz
solution with excellent agreement. Both quantities o and Z increased with curvature for both
modes studied. A significant portion of damping is in-plane (shear) damping induced
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Fig. 10. Effect of curvature angle on natural frequencies of a [0/90/745]S Gr/epoxy free–free shell panel (x hoop, Z
axial direction).
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direction).
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through geometric membrane–flexure coupling. This point will be further illustrated in the
following cases.

Free–free cylindrical panels: Figs. 10 and 11 illustrate the effect of curvature angle on natural
frequencies and corresponding modal loss factors of a [0/90/745]S free–free cylindrical panel with
identical dimensions as the one used in previous case. Due to the complexity of the mode shapes
they are referred as torsion, torsion and bending, etc. in the direction they appear. As expected,
natural frequencies are lower than those in the simply supported case. In the current case, o and Z
show an opposite trend as the curvature increases, which indicates that the boundary conditions
strongly influence the modal damping capacity of the structure. The effect of lamination on the
modal damping of the first torsional mode is shown in Fig. 12 for three different laminations ([(0/
90)4]S; [(0/90/745)]S; [(745/90/0)]S) as a function of curvature angle. It is apparent that the third
lamination has the lowest modal loss factor in this particular mode, due to increased stiffness and
reduced damping in the maximum shear direction.

6. Summary

The mechanics and a finite element-based formulation for predicting modal damping and
natural frequencies of curvilinear composite shell structures were presented. Damping
mesomechanics were formulated in curvilinear co-ordinates using first order shear kinematics.
An eight-node shell damping element was developed and modal loss factors were calculated by the
energy dissipation method.
Numerical results were presented for composite beam, plates and cylindrical panels.

Experiments were also conducted to provide measured modal damping data for composite plates
and cylindrical panels, not previously existing in open literature. Comparisons with other reported
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Fig. 12. Effect of curvature angle on modal loss factor of the first torsional mode in three different laminations (x hoop,
Z axial direction).
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damping theories illustrated that the present model accurately captures the damping of thin shells
and that it also yields very good predictions for thicker laminates. Moreover, correlations with
reported experimental results and with new experimental data further quantified the ability of the
present methodology to predict natural frequency and modal damping in thin and intermediately
thick shell structures. The effect of curvature on modal damping and natural frequency was also
illustrated; in free–free shell panels damping and frequency follow an opposite trend as the
curvature increases, whereas for simply supported boundary conditions both quantities increased
drastically for the lamination studied. The effect of lamination was also investigated in the free–
free case. Future studies will include direct prediction of damping from the equations of motion,
as well as, studies on the enhancement of damping in curved shell structures.
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